JustMaths
Write 84 as a product of its prime factors.

Remember there are several ways of 'sphttung' 84 and all wuttend up with the same prone factors... heres a different one

net the are prime numbers - sol'vegot to carryon...

$$
2 \times 2 \times 3 \times 7 \text { or } 2^{2} \times 3 \times 7
$$

Express 180 as a product of its prime factors.
(2)

(5) (3) $^{\prime}$ (3) $2 \times 2 \times 3 \times 3 \times 5$
OR $2^{2} \times 3^{2} \times 5$

JustMaths
Write 360 in the form $2^{a} \times 3^{b} \times 5^{c}$ this doesn't mention prince factors anywhere....
(2)

$$
2 \times 2 \times 2 \times 3 \times 3 \times 5
$$

$$
2^{3} \times 3^{2} \times 5
$$

This looks Wee the question (i)

JustMaths
The number 1104 can be written as $3 \times 2^{c} \times d$, where c is a whole number and d is a prime number.

Work out the values of c and d.

(2)

$$
2 \times 2 \times 2 \times 2 \times 3 \times 23
$$

Comparing to the question...

$$
\begin{gathered}
3 \times 2^{4} \times 23 \\
\text { so } c=4 \text { and } d=23
\end{gathered}
$$

Gavin product of prime factors isn't mentioned

23 is aprume number

