

Calculate $x$.

$$
\left.\begin{array}{rl}
x^{2} & =3^{2}+4 \\
& =9+16 \\
& =25 \\
x & =\sqrt{25}=5 \mathrm{~cm} \\
7
\end{array}\right] \text { the most common mistake } \text { is to foget thisstep }
$$

JustMaths


XYZ is a right-angle triangle.
$X Y=26 \mathrm{~cm}$
$Y Z=19 \mathrm{~cm}$.
Find XZ correct to 3 significant figures.

$$
\begin{align*}
x^{2} & =26^{2}-19^{2} \\
& =676-361 \\
& =315 \\
x & =\sqrt{315} \\
& =17.74823935 \\
& =17.7 \mathrm{~cm} \tag{3}
\end{align*}
$$

JustMaths

$A B C$ is a right-angle triangle.

$$
\begin{aligned}
& A B=6 \mathrm{~cm} \\
& B C=14 \mathrm{~cm}
\end{aligned}
$$

don't yest assume
$\checkmark$ its My thagoras.iread
(a) Work out the area of the triangle $A B C$.

$$
=\frac{6 \times 14}{2}=\frac{84}{2}=42
$$

$$
\begin{equation*}
42 \mathrm{~cm}^{2} \tag{2}
\end{equation*}
$$

(b) Calculate the length of AC.

Give your answer correct to 2 decimal places.

$$
\begin{aligned}
x^{2} & =6^{2}+14^{2} \\
& =36+196 \\
& =232
\end{aligned}
$$

$$
\begin{aligned}
x & : \sqrt{232} \\
& =17.23154621
\end{aligned}
$$

$\qquad$
17.23 cm

A ladder is 6 m long.
The ladder is placed on horizontal ground, resting against a vertical wall.

The instructions for using the ladder say that the bottom of the ladder must not be closer than 1.5 m from the bottom of the wall.

How far up the wall can the ladder reach?
Give your answer correct to 1 decimal place.


$$
\begin{align*}
x^{2} & =6^{2}-1.5^{2} \\
& =36-2.25 \\
& =33.75 \\
x & =\sqrt{33.75} \\
& =5.809475019 \\
& =5.8 \mathrm{~m} \tag{3}
\end{align*}
$$

