
$A B C$ is a right-angled triangle.
$A C=16 \mathrm{~m}$
Angle $C A B=58^{\circ}$
Calculate the length of $A B$
Give your answer correct to 3 significant figures.

$$
\begin{align*}
& \cos 58=\frac{x}{16} \\
& 16 \times \cos 58=x \\
& x=8.478708228 \tag{3}
\end{align*}
$$

Calculate the length x
Give your answer correct to 2 decimal places.

$$
\sin 32=\frac{5}{x}
$$

$$
x=\frac{5}{\sin 32}
$$

(3)

$$
=9.43: 5399574
$$

JustMaths

Diagram NOT accurately drawn
$A B C$ is a right-angled triangle.
$C B=8 \mathrm{~m}$
Angle $C A B=37^{\circ}$
Calculate the length of $A B$
Give your answer correct to 3 significant figures.
$S^{0}{ }^{\circ} C^{A} H T^{O_{A}}$

$$
\begin{aligned}
\tan 37 & =\frac{8}{x} \\
x & =\frac{8}{\tan 37} \\
& =10.61635857
\end{aligned}
$$

(3)

s A 8 cm
R
$P Q R S$ is a trapezium.
$P Q$ is parallel to $S R$.
Angle $P S R=90^{\circ}$.
Angle $P R S=62^{\circ}$.
$P Q=14 \mathrm{~cm}$.
$S R=8 \mathrm{~cm}$.
a) Work out the length of PS. Give your answer correct to 3 significant figures.

$\tan 62=\frac{x}{8}$

$$
8 \times \tan 62=x
$$

$$
x=15.04581172
$$

$x=15.0 \mathrm{~cm}$

