The diagram shows a quadrilateral $A B C D$.

$A B=16 \mathrm{~cm}$.
$A D=12 \mathrm{~cm}$.
Angle $\mathrm{BCD}=40^{\circ}$.
Angle $A D B=$ angle $C B D=90^{\circ}$.
Calculate the length of CD.
Give your answer correct to 3 significant figures.

$$
\begin{aligned}
B D^{2} & =16^{2}-12^{2} \\
& =112 \\
B D & =\sqrt{112} \\
& =10.58300524 \mathrm{~cm}
\end{aligned}
$$

$S / H C^{A} H T^{O} A$

$$
\begin{equation*}
\sin 40=\frac{10.58}{x} \tag{5}
\end{equation*}
$$

leavethe"full"value $=16.4 .5955809$
of BD in your
calculator...
$=16.5 \mathrm{~cm}$

JustMaths

$A C=8 \mathrm{~cm}$.
$A B=3 \mathrm{~cm}$.
$D E=19 \mathrm{~cm}$.
Angle $A B C=$ angle $C B D=$ angle $B D E=90^{\circ}$.
Angle $B D C=50^{\circ}$.
a) Calculate the length of $C D$. Give your answer correct to 3 significant figures.

$$
\begin{align*}
C B^{2} & =8^{2}-3^{2} \\
& =55 \\
C B & =\sqrt{55} \\
& =7.416198487 \mathrm{~cm} \tag{4}
\end{align*}
$$

$$
\sin 50^{\circ}=\frac{742}{x}
$$

$$
\begin{aligned}
& x=7.42 \div \sin 50 \\
& x=9.686122087 \\
& x=9.69 \mathrm{~cm}
\end{aligned}
$$

