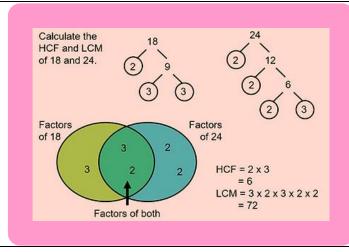
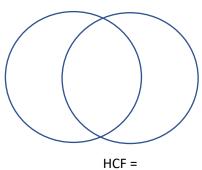
Maths Revision Pack Year 10 <u>Higher</u>


Assessment Week 1

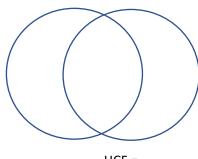
Name: _____

Example 1	Example 2	Example 3
Flip Power 16 2 Root	Power 27 3 Root	Flip Power 125 Root
Step 1 : $\sqrt{16}$ = 4 Step 2 : 4^3 = 64 Step 3 : $\frac{1}{64}$	Step 1: $\sqrt[3]{27}$ = 3 Step 2: 3^2 = 9 Step 3: $\frac{1}{9}$	Step 1: $\sqrt[3]{\frac{27}{125}} = \frac{3}{5}$ Step 2: $(\frac{3}{5})^2 = \frac{9}{25}$ Step 3: $\frac{25}{9} = 2\frac{7}{9}$
	Questions	
23	3-3	$25^{\frac{1}{2}}$
$25^{-\frac{1}{2}}$	$36^{\frac{1}{2}}$	$27^{\frac{1}{3}}$
$27^{-\frac{1}{3}}$	$64^{\frac{3}{2}}$	$64^{\frac{2}{3}}$
$125^{-\frac{2}{3}}$	$(\frac{16}{81})^{\frac{1}{2}}$	$(\frac{8}{27})^{-\frac{1}{3}}$
$(\frac{49}{121})^{\frac{3}{2}}$	$(\frac{9}{144})^{-\frac{3}{2}}$	$(\frac{1}{125})^{-\frac{2}{3}}$

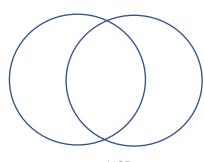
Example 1	Example 2	Example 3
	Write down	Write down
Write down	2 ⁵ X 8 ⁹ as a single	$3^7 X 81^5$ as a single power of 3.
2^7X 8 as a single power of 2.	power of 2.	
2 ⁷ ×8	2 ⁵ × 8	3×81^{3}
$2^{7} \times 2^{3} = 2^{10}$	$2^5 \times (2^3)^9$	$3^{7} \times (3^{4})^{5}$
	$2^{5} \times 2^{27}$	3 × 3 20
	2^{32}	327
144	Questions	
$2^4 X 16$	rite these as single a single p $2^9 X 32$	3 ⁵ <i>X</i> 27
2 ⁵ X 8 ⁷	2 ⁵ <i>X</i> 16 ³	$3^2 X 9^5$
$2^4 X 8^3$	$4^5X\ 16^9$	$4^2X 64^6$
5 ² X 25 ²	5 ⁶ X 125 ⁴	$16^3 X 64^6$
2527 1252	05 V 272	272 V 016
25 ² X 125 ²	9 ⁵ <i>X</i> 27 ²	27 ² X 81 ⁶


Example 1	Example 2		
$\left(2 \times 5 \right)^{3}$	$(5a^4b^8)^3$ $5a^4b^8 \times 5a^4b^8 \times 5a^4b^8$		
$2x^5y^7 \times 2x^5y^7 \times 2x^5y^7$	5a4b8 × 5a4b8 × 5a4b8		
8x15 y21			
Ques	<u>tions</u>		
$(6x^4y^7)^2$	$(5x^8y^3)^2$		
(2.315)2	(739)2		
$(3a^3b^5)^2$	$(7x^3y^9)^2$		
$(3x^4y^6)^3$	$(4a^5b^2)^3$		
Example 1	Example 2		
$9^0 = 1$ $9^0 \times 7^2$	$b^{0} = 1$ $b^{0} + 8^{1}$		
$7^2 = 49$ 1 x 49 = 49	$8^1 = 8$		
Ques	tions		
$8^1 + 7^0$	$3^2 \times a^0$		
$13^0 + 6^2$	$15^1 - 35^0$		

18=2×3×3 24=2×2×2×3


Questions

Find the HCF and LCM of 54 and 36.


HCF =

Find the HCF and LCM of 120 and 220.

HCF = LCM =

Find the HCF and LCM of 240 and 180.

HCF = LCM =

Example 1	Example 2	Example 3
$N=3^4 \times 5^3 \times 7^5$	$N=2^3 \times 3^3 \times 5^2$	$N=2^3 \times 3^8 \times 5^2$
What is 3N?	What is $3N^2$?	What is $27N^2$?
$3 \times 3^{4} \times 5^{3} \times 7^{5}$ $= 3^{5} \times 5^{3} \times 7^{5}$	$3 \times 2^{3} \times 3^{3} \times 5^{3} \times 2^{3} \times 3^{3} \times 5^{3}$ $2^{6} \times 3^{7} \times 5^{4}$	27 3 3 3
		27=3 ³
		3×2×3×5×2×3×5
		$2^6 \times 3^9 \times 5^4$
	Questions	
$N=2^4 \times 5^3 \times 7^5$	$N=2^3 \times 3^3 \times 5^2$	$N=2^3 \times 3^8 \times 5^2$
What is 5N?	What is $2N^2$?	What is $24N^2$?
$N=3^4 \times 5^3 \times 7^5$	$N=2^9 \times 3^3 \times 7^2$	$N=2^3 \times 3^7 \times 5^2$
What is 2N?	What is $3N^2$?	What is $18N^2$?
$N=2^7 \times 3^8 \times 5^3 \times 7^5$	$N=2^5 \times 3^8 \times 5^3 \times 7^5$	$N=2^4 \times 3^8 \times 5^2$
What is 7N?	What is 5N ² ?	What is 125 <i>N</i> ² ?

Example 2

$$15 + 6x = 45 + 8x$$

$$15+6x = 45+8x$$

 $-6x - 6x$

$$-45 - 45$$

 $-30 = 2$
 $15+6(-15)^{\frac{2}{3}} + 45 + 8(-15)$

$$\frac{-30}{2} = \frac{2x}{2}$$

$$15 + (-90)^{\frac{2}{3}} + 45 + (-120)$$

$$-75 = -75$$

$$\frac{2x}{5} = 3$$

underneath to make it a fraction

$$\frac{2x}{5}$$
 $\times \frac{3}{1}$

Fraction=fraction Use scissors

$$2x(1) = 3(5)$$

$$\frac{2x = 15}{2}$$

Example 3

$\frac{3W+4}{5}$ $\frac{2}{7}$

Fraction=fraction Use scissors

Example 4

Fractions Both Sides Equation

Solve the Equation : 8h + 7 = 3h - 4

$$\frac{8h+7}{2} = 3h-4$$

1a. Cross Multiply: 8h + 7 = 3h - 4

1b. Use Brackets: 1 (8h + 7) = 2 (3h - 4)

1c. Expand Out: 8h + 7 = 6h - 8

Now solve as letter both sides

Questions

Solve these equations

$$\frac{x}{4} = 8$$

$$\frac{2a}{3} = 8$$

$$\frac{10x - 1}{7} = 8$$

$\frac{7c+4}{8}=11$	$\frac{53 - 2x}{5} = 7$	$\frac{11-w}{5}=3+w$
		2(2x-6) 2x
$\frac{9(4x-1)}{2x}=15$	$\frac{x}{2x-1} = 5$	$\frac{2(3x-6)}{5} = \frac{3x}{2}$
r ± 15	$\frac{5x}{5} = 3x - 8$	$2(5-6x)=\frac{3x}{2}$
$\frac{x+15}{3} = 2(x+10)$		2

Example 2

$$\frac{3x}{5} + 2^{2} = 7$$

$$\frac{3x}{5} = 5$$

$$\frac{3x}{5} \times 5$$

$$1(3x) = 5(5)$$

$$\frac{3x}{3} = 25$$

$$\frac{3x}{3} = 25$$

Add a one underneath to

Fraction=fraction Use scissors

4 + 1= 12 5W (=) (-)

make it a fraction $\frac{4}{5W} = 11$

4 311 5w x 1 4(1)=5W(11) 4=5W W= E

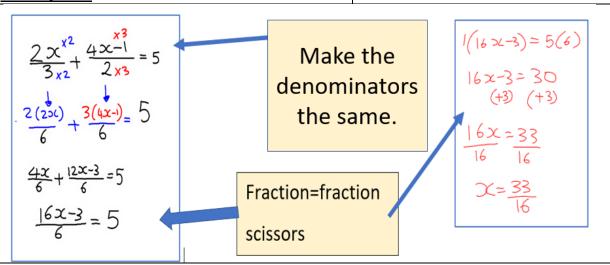
Add a one underneath to make it a fraction

> Fraction=fraction Use scissors

Solve these equations

$$\frac{x}{2} + 1 = 3$$

X=25

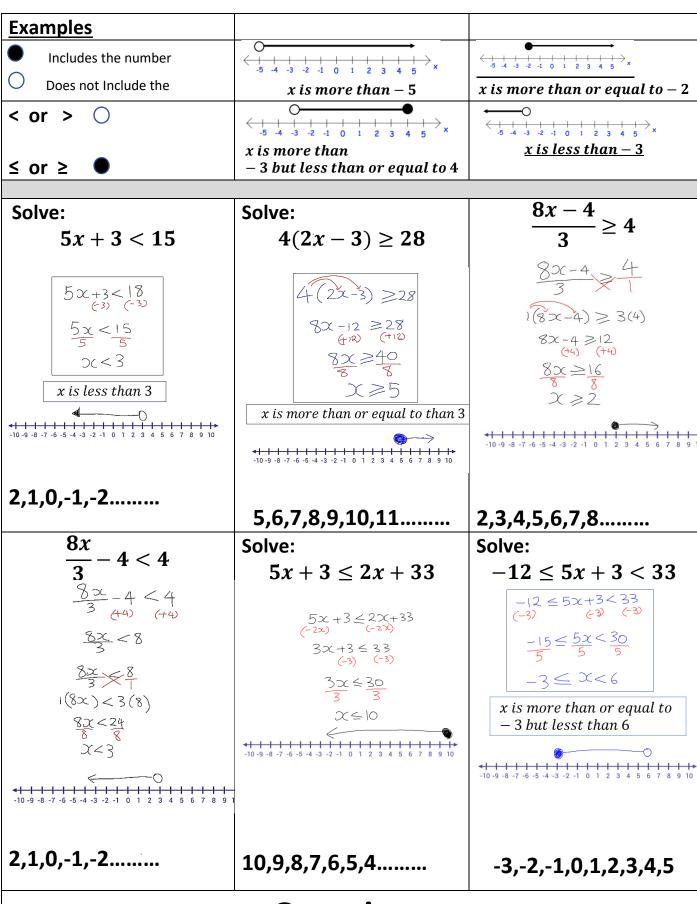

$$\frac{a}{3} + 4 = 9$$

$$\frac{a}{3} + 4 = 9$$
 $\frac{2r}{5} - 3 = 2$

$$\frac{3}{c} + 8 = 2$$

$$\frac{3 x}{4} + 1 = 12$$

$$\frac{3 x}{4} + 1 = 12$$
 $\frac{4}{p} + 3 = 5$


Solve these equations

$$\frac{x+5}{3} + \frac{x+1}{2} = 8$$

$$\frac{2x-1}{4} + \frac{x-3}{5} = 3$$

$$\frac{x+5}{10} - \frac{x+4}{2} = 1$$

$$\frac{x-3}{4} - \frac{x-8}{3} = 4$$

Questions

Solve these inequalities, draw a number line and write down the integers that satisfy the inequalities.

$2x + 1 \le 9$	3x-5	> 16	4(2x+1) > 9	
$5x - 2 \ge 68$	$4x \le x$	x + 6	$\frac{x}{9} - 6 > 4$	
$\frac{x}{2} + 1 \le 5$	$\frac{x+3}{2} \ge 5$		$\frac{x-5}{4} > 2$	
$\frac{x+18}{4} \le 5$		4 <i>x</i>	$+6 \leq x+21$	
9x + 4 > 7x +	15	$4x - 4 \leq 7x - 19$		
5 < 2 <i>y</i> < 12	2	2	$4 \le 2x \le 8$	
$-3 \le x + 2 <$	2	1	$\leq 2y-3 < 9$	
$16 \le 5x + 1 <$	< 31	7	$< 2y - 3 \le 25$	

y = 2x + 1

×	-1	0	1	2	3
У	-1	1	3	5	7

$$2(3) + 1 = 7$$

$$2(2) + 1 = 5$$

$$2(1) + 1 = 3$$

$$2(0) + 1 = 1$$

Example2

x + 2y = -2

×	-1	0	1	2	3
у	-0.5	-1	-1.5	-2	-2.5

$$-1-\frac{1}{2}(3) = -2.5$$

Re-arrange to make y the subject

$$-1-\frac{1}{2}(2) = -2$$

$$-1-\frac{1}{2}(1) = -1.5$$

$$-1-\frac{1}{2}(0)=-1$$

$$-1-\frac{1}{2}(-1)=-0.5$$

$$2(+2y=-2)$$

$$\frac{2y}{2} = \frac{-2 - x}{2}$$

$$y = -1 - \frac{1}{2}x$$

$\frac{\textbf{Questions}}{y = 4x - 2}$

v = 3x - 1

×	-1	0	1	2	3
У	-4			5	

$$y = 4x - 2$$

×	-2	-1	0	1	2	3
У						

$$y = \frac{1}{2}x + 1$$

×	-2	-1	0	1	2	3	4
у							

$$2x + y = 4$$

×	-1	0	1	2	3
У					

Example 1

Gradients from two points

Find the gradient of the line passing through (2,5) and (6,13)

TSD: Two coordinates
Subtract

Find the gradient of the line passing through (2,5) and (6,13)

$$\frac{-6,13}{-2,5}$$

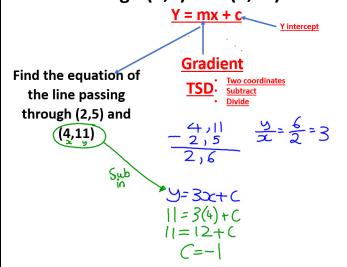
 $6,13 \quad \stackrel{4}{\cancel{2}} = \frac{8}{4} = 2$

Example 2

Gradients from two points

Find the gradient of the line passing through (-2,9) and (-4,7)

Find the gradient of the line passing through (-2,9) and (-

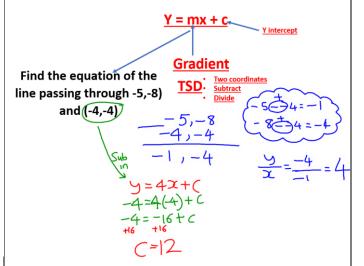


y=2=1

Gradient = 1

	<u>estions</u>	
(1, 4) and (3, 10)	(0, 0) and (3, 12)	
(5, -2) and (9, 14)	(-5, -9) and (1, 3)	
(-7, -2) and (1, -4)	(-2, 1) and (8, -7)	
<u>Ex</u>	<u>kample</u>	
Straight line Y = mx + c Gradient TSD. Two coordinates Subtract Divide	TSD: No coordinates Subtract Divide $ \frac{c}{2}, \frac{d}{d} = \frac{3}{2} $ Vintercept Qradient (m) = $\frac{3}{2}$ Y-intercept (c) = 1 Equation: $y = \frac{3}{2}x + 1$	
Questions: find the equations		
-2 -1 O 1 2 3 4 5 6 7 8 x	8	
7 6 6 -5 -4 -3 -2 -1 -2 -1 0 1 2 3 4 5 6 7 8 x	-2 -1 O 1 2 3 4 5 6 7 8 x	

Find the equation of the line passing through (2,5) and (4,11)


Gradient (m) = 3

Y-intercept (c) = -1

Equation: y = 3x - 1

Example2

Find the equation of the line passing through (-5,-8) and (-4,-4)

Gradient (m) = 4

Y-intercept (c) = 12

Equation: y = 4x + 12

Questions: find the equations

(1, 6) and (5, 4)

(3, 5) and (4, 1)

(-4, 2) and (1, 7)

(-5, 4) and (5, 2)

(-6, -4) and (-3, 2)

(-10, -5) and (-7, 4)

Examples	
The equation of line \mathbf{L}_1 is $y = 5x + 1$ The equation of line \mathbf{L}_2 is $2y - 10x + 3 = 0$ Show that these two lines are parallel.	parallel \rightarrow same gradient (m) Re-arrange $y = mx + c$ L1 $y = 5x + 1$ $m = 5$ L2 $2y = 10x + 3 = 0$ Same $(+10x)$ Gradient (-3) $(-$
Parallel to $y = 6x + 3$ and passing through (10, 5)	Parallel to $y = 6x + 3$ and passing through $(\overline{10}, \overline{5})$ Parallel mis also 6. $M = 6$ Same $y = 6x + C$ $5 = 6(10) + C$ $5 = 60 + C$ $-55 = C$ $-55 = C$
Find the equation of the straight line passing through the point $(0, 1)$ which is perpendicular to the line $y = -2x + 2$	Perpendicular - (hange sign & gradient Flip $y = -2 \times +2$ $m = -2$ * Perpendicular = $+\frac{1}{2}$ $m = -2$ $y = \frac{1}{2} \times +2$ $y = \frac{1}{2} \times +1$
Questi	<u>ons</u>
Find the equation of the line that is parallel to $y = \frac{1}{2}x - 3$ and passes through the point (6,-2).	Parallel to $y = 5x - 4$ and passing through $(2, 9)$

Perpendicular to y = -3x + 4 and passing through (6, 1)

Parallel to y = 4x and passing through (-1, 3)

Examples a:b = 2:5 $\frac{5}{9}$ of the apples are green. The rest are red. What fraction is b? Write down the ratio of red: green a:b Total 2:5 7 Write down the ratio of green: red -= Gireen R:G Total G1:R Total 4:59 5:49 b= 5 Write 4:7 in the form of n:1 Amy and Ben share some money. Amy gets four times as much as Ben. Write down the ratio of Amy: Ben Amy: Ben Write 4:7 in the form of 1:n a:b = 2:5a:b = 2:5a + b = 21. what is a - b? b - a = 21, what is b + a? Amy and Ben share some money in the ratio 4:9. a:b=7:4Amy gets £35 less than Ben. How much did they share? b:c=2:5Work out a:c Give your answer in its simplest form. 4 2:5 Lamof 4&2 ×1 ×2 ×2 15 4 Write down the ratio of x:y a: b is 4:9. Write down an equation 8x = 3ySimplifies to 3x3 = 1X9

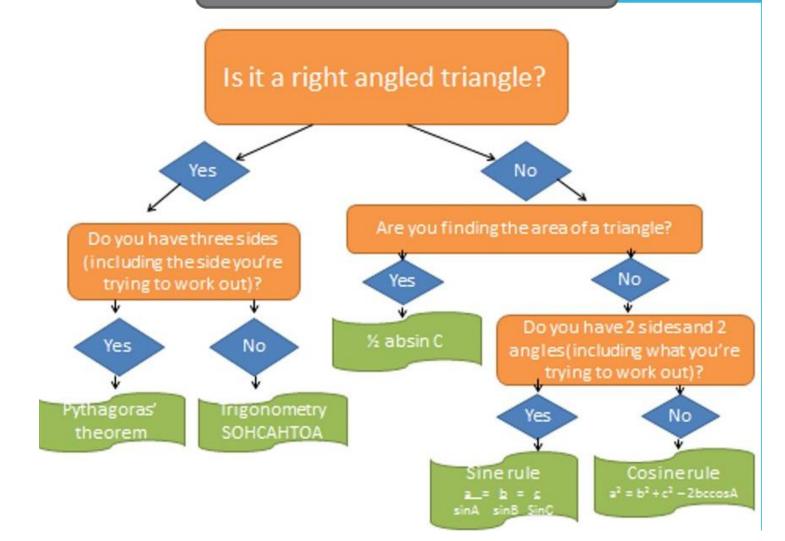
Jamie and Alastair share some sweets in the ratio 7 : 5. Jamie gives 2 sweets to Alastair. The ratio of sweets is now 13 : 11.

How many sweets did each initially have?

J: A
$$11(7x-2)=13(5x+2)$$

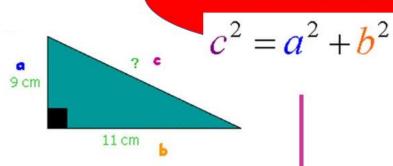
before $7x$: $5x$ $77x-22=65x+26$
 $+22$
Now $7x-2$: $5x+2$ $77x=65x+48$
 $-65x$ $-65x$
Now 13 : 11
 $12x=48$
 12
 12
 12

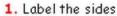
The ratio of green to yellow beads is 4:5, and there are initially 27 beads. I add some yellow beads and the ratio is now 1:3. How many yellow beads did I add?


G1: Y Total
4:5 9
X3 X3 X3 X3
$$= 1(15+x)$$

before 12:15 27 $= 36=15+x$
Now 12:15+x
Now 1:3 $= 36=15+x$
 $= 15 = 15$

<u>Quest</u>	<u>tions</u>
a:b = 3:5 What fraction is b?	$\frac{8}{9}$ of the apples are green. The rest are red. Write down the ratio of red : green
	Write down the ratio of green : red
Amy and Ben share some money. Ben gets five times as much as Amy. Write down the ratio of Amy: Ben	Write 3:8 in the form of n:1
	Write 3:8 in the form of 1:n
a:b = 3:5 a + b = 32. what is a – b?	a:b = 3:5 b – a = 32, what is b + a?
Amy and Ben share some money in the ratio 5:8. Amy gets £33 less than Ben. How much did they share?	a, b and c are positive integers. $a:b=3:8$ and $b:c=6:11$ Work out the smallest possible value of $a+b+c$
a : b is 4:9. Write down an equation	8x = 3y Write down the ratio of x:y
The ratio of the number of boys to girls at a party is 3:4 Six boys leave the party. The ratio of the number of boys to girls at the party is now 5:8 Work out the number of girls at the party.	The ratio of red to blue counters is 2 : 5 and there are 40 blue counters. When I remove some red counters the ratio is now 1 : 4. How many red counters did I remove?


	Examples
$x^2 - 7x + 12$	$ax^{2} + bx + c$ $x = 1$ $x = 1$ $x = 2$ $x = 2$ $x = 3$ $x = 4$ $x = 1$ $x = 2$ $x = 2$ $x = 3$ $x = 4$ $x $
$x^2 + 4x - 5$	$0x^{2} + bx + 0$ $0x^{2} + b$
x ² - 81	x^2-81 two squares. (x+9)(x-9)
2x ² +7x -15	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\frac{20x^2 + 21x + 4}{16x^2 - 1}$	$\begin{array}{c} 20x^{2} + bx + c \\ 20x^{2} + 21x + 4 \\ & b = 21 \\ \hline 516 \\ & (2x + 6) \\ & (2x + 6) \\ \hline (2x + 6) \\ & (2x$


Factorise:	2 W + 6
2w + 6	$H \subseteq 2$ 2(w+3)
Factorise:	J'difference of
$w^2 - 16$	W-16 Z squares
	(w+4)(w-4)
Factorise:	$M^2 + 4W + 3$ $d=1$ $\times \sqrt{3}$
$w^2 + 4w + 3$	$W^{2}+4W+3$ $W^{2}+4W+4$ $W^{$
Simplify	2x+8=2(x+4)
$\frac{2x+8}{3}$	$x^{2}-16=(x+4)(x-4)$
$x^2 - 16$	$2(x+4) - \frac{2}{}$
	$\frac{2(x+4)}{(3(+4)(x-4))} = \frac{2}{x-4}$
Simplify	
$x^2 - 8x + 12$	
$x^2 - 36$	
Simplify	
$2x^2 + 7x - 9$	
$\frac{2x^{2} + 7x^{2}}{4x^{2} - 81}$	

TRIGONOMETRY

PYTHAGORAS

2. Use the formula:
$$c^2 = a^2 + b^2$$

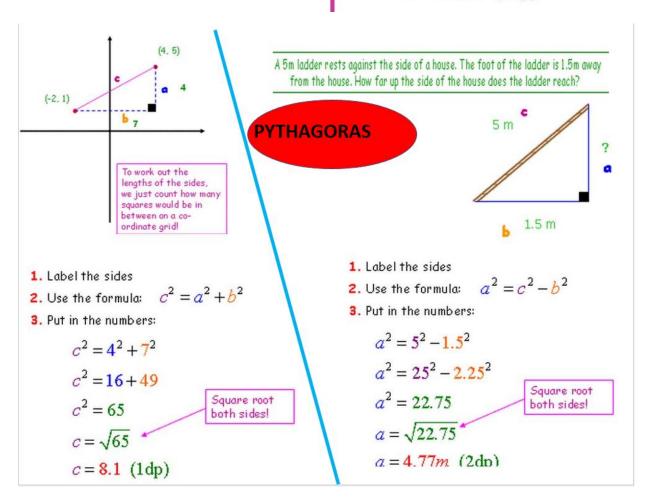
3. Put in the numbers:

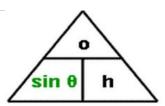
$$c^{2} = 9^{2} + 11^{2}$$

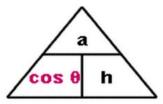
$$c^{2} = 81 + 121$$

$$c^{2} = 202$$

$$c = \sqrt{202}$$

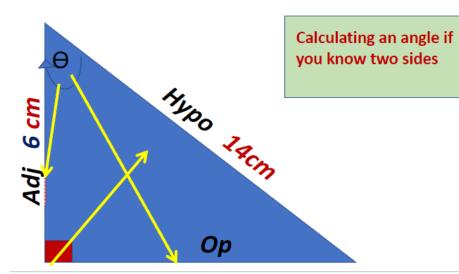

$$c = 14.2cm \quad (1dp)$$
Square root both sides!


2. Use the formula:
$$a^2 = c^2 - b^2$$


10.2 m

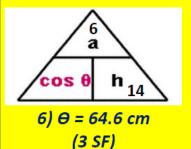
3. Put in the numbers:

$$a^{2} = 10.2^{2} - 3.1^{2}$$
 $a^{2} = 104.04^{2} - 9.61^{2}$
 $a^{2} = 94.43$
 $a = \sqrt{94.43}$
 $a = 9.72m$ (2dp)



2) $\Theta = X$

A = 6 cm


- 1. Label
- 2. Information
- 3. Rule
- 4. Substitution
- 5. Work out the answer
- 6. Round if needed

O н

4)Cos
$$\Theta = \frac{-6}{H}$$
5) $\Theta = \text{shift Cos } 6/14$
 $\Theta = 64.62306647$

What you need to know:

<u>Trigonometry – Finding a side 1</u>

Calculate the length of AB.

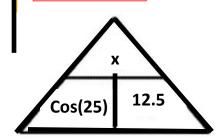
OPP TANGENT =

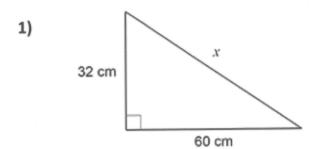
C Step 1 – Label the sides you need as O, A or H.

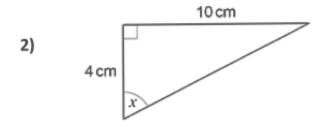
Step 2 - Use this to decide which trig ratio to use.

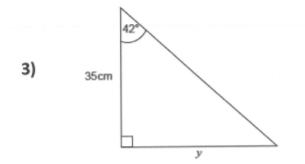
Step 3 - Substitute the given values into the formula.

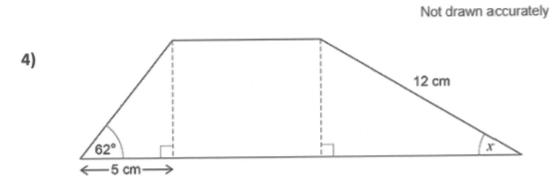
Step 4 - Use inverse operations to rearrange & isolate x.

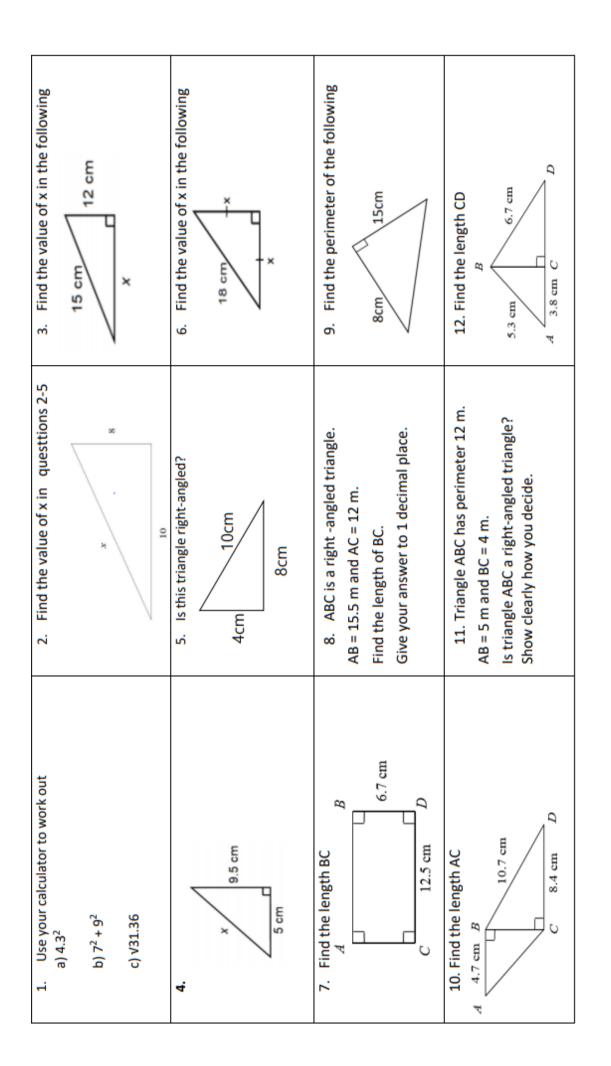

$$cos(25) = \frac{x}{12.5}$$

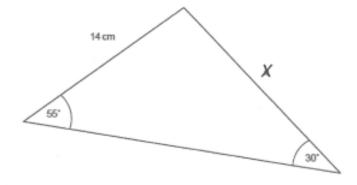

The inverse of dividing by 12.5 is multiplying.


Don't round your answer, you get no marks for this!

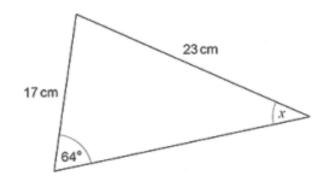

x = 11.32884734 cm


 $\cos(25) \times 12.5 = x$

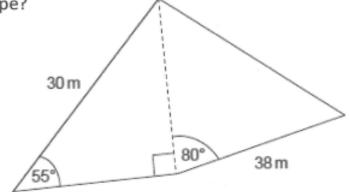




Work out the size of angle x.



Yr II (H) Revision - Sine Rule
To calculate $a = b$ a length $Sin(A) = sin(B)$
To calculate $Sin(A) = Sin(B)$ an angle $a = b$.
Example (1) firstly work out the missing
$\frac{14.7}{cm}$ $\frac{29^{\circ}}{2}$ $\frac{14.7}{2}$ $\frac{14.7}{2}$ $\frac{104}{2}$ $\frac{3in(29)}{2}$ $\frac{5in(104)}{2}$
$x = \frac{14.7}{\sin(104)} \times \sin(29) = \frac{7.34 \text{ cm}}{100}$
Example(2) $6cm \qquad 8cm \qquad \frac{\sin(A)}{8} = \frac{\sin(32)}{6}$
$A)$ (32°) $Sin(A) = \frac{Sin(32)}{6} \times 8$. $A)$ $Sin^{-1}(ANS) = 45°$


1)

2)

3) Perimeter of shape?

Example - find the area

Learn the formula:- Area =
$$\frac{1}{2}abSinC$$

Find the area of the triangle to 1dp.

- 1) Label sides
- 2) Substitute in values:

$$Area = \frac{1}{2} \times 5 \times 6 \times Sin(48)$$

Type in to your calculator:
 11.1cm to 1dp

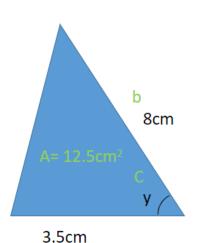
Example - missing side

Learn the formula:- Area = $\frac{1}{2}abSinC$

Find the length of 'x' 1dp.

- 1) Label sides
- 2) Substitute in values:

$$8.5 = \frac{1}{2} \times 4 \times ? \times Sin45$$


3)Divide through by everything except the ?.

$$\frac{8.5}{\frac{1}{2} \times 4 \times \sin 45} = ?$$

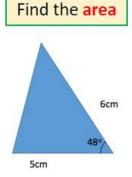
4) Type in to calculator: 6.0cm to 1dp

Example - missing angle

Learn the formula:- Area = $\frac{1}{2}abSinC$

Find the length of 'y' 1dp.

- 1) Label sides
- 2) Substitute in values:


$$12.5 = \frac{1}{2} \times 3.5 \times 8 \times Sin(?)$$

3) Divide through by everything except the sin(?).

$$\frac{12.5}{\frac{1}{2} \times 3.5 \times 8} = \sin(?)$$

4) Type in to calculator and don't forget to sin -1:62.3° to 1dp

Area =
$$\frac{1}{2}$$
 abSinC

4cm

3.5cm